
	
	 	

OSS	SYSTEM	ARCHITECTURE	
Version	0.1	

Venkata	R	Pagadala	
venkat@apache.org	

Abstract	
This	document	was	submitted	as	a	candidate	Architecture	

specification,	for	the	IoT	problem	posed	by	Ericsson	

January 2016



Table	of	Contents	
	
1	 Introduction	 3	

1.1	 Purpose	 3	
1.2	 Scope	 3	
1.3	 Definitions,	Acronyms	and	Abbreviations	 3	

2	 Architectural	Goals	and	Constraints	 3	
2.1	 Functionality	Goals	 3	
2.2	 Expected	Processing	Workload	on	the	System	 3	
2.3	 Data	storage	sizing	 4	
2.4	 Non-functional	Requirements	(Architectural	Qualities)	 4	

3	 Assumptions	 4	
4	 User	Roles	 4	
5	 System	Integrations	 5	

5.1	 ESB	Charging	 5	
5.2	 Power	Meter	 5	

6	 Architectural	Representation	 5	
7	 Use-case	View	 5	
8	 System	Architecture	View	 6	
9	 Technology	choices	 7	

9.1	 Software	Frameworks	/	Components	 7	
9.2	 Deployment	Specifications	 7	

10	 Data	Architecture	 7	
10.1	 Event	Data	(high-growth	/	variable)	 8	
10.2	 Entity	data	 8	

11	 Data	processing	pipeline	 8	
12	 System	Components	 9	

12.1	 Security	Considerations	 9	
12.2	 Metrics	Streaming	(Meter	monitoring)	 9	
12.3	 Netty	Listener	 10	
12.4	 Apache	Kafka	 10	
12.5	 Apache	Storm	 10	
12.6	 Apache	Hadoop	 10	
12.7	 Apache	Cassandra	 11	
12.8	 NGinX	 11	
12.9	 JBoss	(WildFly)	 11	
12.10	 Micro	Services	 11	
12.11	 Push	services	 11	

13	 Monitoring	the	Deployment	 11	
14	 System	Maintenance	 12	

14.1	 Data	Migration	and	Schema	Changes	 12	
14.2	 S/W	Upgrade	 12	

15	 References	 12	
	 	



1 Introduction	
1.1 Purpose	
This	document	describes	the	system	architecture	using	different	architectural	views	to	
depict	different	aspects	of	the	system.	It	is	intended	to	capture	and	convey	the	significant	
architectural	decisions	which	have	been	made	on	the	system.		
	
1.2 Scope	
This	Software	Architecture	Document	provides	an	architectural	overview	of	the	OSS	system	
that	is	responsible	for	remote	monitoring	and	managing	the	power	meters	deployed	by	ESB	
Charging	at	their	consumer	locations.	
	
1.3 Definitions,	Acronyms	and	Abbreviations	
ESB	Charging	 			A	ESB	division	and	the	customer	for	the	OSS	system	
OSS	 Operations	Support	System	–	The	Ericsson	software	to	use	components	

built	using	this	architecture	
Power	Meter	 A	smart	device	that	sends	energy	consumption	data	to	ESB	Charging	
3G/LTE	 Wireless	technologies	used	for	communicating	with	Power	Meters	
(e)	RBS	 A	protocol	for	managing	the	meters	through	an	RBS	system	
Metrics	 Monitoring	data	received	from	meters	(raw	and	aggregated)	
Dashboards	 UI	components	that	display	visuals	for	aggregate	data	and	alerts	

2 Architectural	Goals	and	Constraints	
There	are	some	key	requirements	and	system	constraints	that	have	a	significant	bearing	on	
the	architecture.	They	are:	
	
2.1 Functionality	Goals	

1. Monitor	status	of	the	system	of	the	power	meters	
2. Manage	S/W	and	configuration	of	the	power	meters	

	
2.2 Expected	Processing	Workload	on	the	System	
Meter	interface	
• Meters:	 	 	 2	million	(adding	a	buffer	of	500K)	
• Monitoring	events:	 6000/sec	notifications	(once	every	5	minutes	per	meter)		
• Configuration	events:	 25/sec	(on	daily	basis)	
• Maintenance	actions:	 200/min	(S/W	upgrade,	error	alerts	-	once	every	week)	
	
ESB	interface	
• Meter	readings	count:	 1/min	(from	ESB,	once	every	minute	for	all	meters)		
• ESB	error	alerts:	 	 200/min	(one	error	alert	for	a	meter	in	week)		
	
User	Interface	(Admin,	App	Users)	
• Dashboard	requests:	 10/sec	(100	concurrent	users,	with	10	sec	think-time)	
	
Note:	The	system	should	be	capable	of	handling	twice	the	workload	mentioned	above	with	
an	acceptable	performance,	to	account	for	variations	and	cyclic	peak-time	work	loads.		



2.3 Data	storage	sizing	
Entity	data	(fixed-size):		 200	GB	(100K	for	each	meter	and	related	data	*	2M	meters)		
Monitoring	data	(raw):	 10	GB/day	(meter	ID,	buffer	fill	%,	meter	health	stats	-	20	

bytes	per	event)	
Aggregate	metrics:		 1	GB/day	(processed	analytics/reports	data	-	hourly	and	daily	

aggregates,	anomaly	data)	
OSS	Alerts	data:		 100	MB	/day	(created	by	OSS	while	processing	the	raw	

monitoring	data)		 	
	

2.4 Non-functional	Requirements	(Architectural	Qualities)	
1. Real-time	processing	of	meter	data	by	matching	the	velocity	of	incoming	data	
2. Sub-second	response	times	for	dashboard	requests	
3. Security	for	accessing	the	data	reports	and	performing	management	actions	
4. High	availability	for	metrics	processing,	dashboards	and	alert	systems	
5. High	maintainability	through	visibility	into	system	components	and	runtime	

situations	
6. Allow	for	faster	feature	development	and	feature	change	or	bug-fixing	
7. Allow	for	quick	deployment	of	the	system	and	upgrade	of	components	
8. Compatibility	with	different	types	of	management	interfaces	on	meters		

3 Assumptions	
1. The	requirements	mention	that	meter	sends	readings	every	6	hours	but	does	not	

specify	who	receives	the	readings	(ESB	Charging	or	OSS?).	The	diagram	seems	to	
indicate	that	ESB	Charging	receives	the	readings.	So	it	is	assumed	that	OSS	is	
responsible	only	for	managing	the	devices	(configuration,	upgrades,	alerts,	status	
monitoring),	but	not	for	processing	meter	readings.	

2. The	requirements	also	mention	that	“ESB	Charging	will	generate	#	of	collected	
readings”.	It	is	assumed	that	ESB	Charging	sends	this	data	to	OSS	every	minute	
(count	of	readings	collected	in	every	minute).	This	data	is	used	by	OSS	as	one	of	the	
monitoring	metrics.	

3. Meters	are	running	an	App	that	is	capable	of	sending	monitoring	metrics,	alarms	to	
OSS	over	3G/LTE.	

4. The	agent	app	running	on	the	power	meter	supports	receiving	configuration	
changes,	S/W	upgrades	and	queries	for	the	status	and	other	information.		

5. The	ESB	Charging	supports	integration	using	REST	API	for	communicating	with	OSS.	
6. It	was	not	clear	from	requirements	about	the	expected	number	of	meters	to	

manage,	as	it	mentions	1	million	in	3	years,	but	also	mentions	1.5	million	in	the	3rd	
year.	So	it	is	assumed	that	the	total	number	of	meters	to	be	managed	by	OSS	in	the	
3rd	year	is	expected	to	be	1.5	million,	according	to	the	pace	of	adding	the	meters.	

4 User	Roles	
Following	are	the	user	roles	envisaged	to	interact	with	the	system	

1. Admin	User	
a. Configures	deployment,	scalability,	users,	security	
b. Provisioning	of	instances,	storage	and	networking	
c. Configures	app	and	data		
d. Provisions	meters,	grants	API	tokens	



e. Configures	dashboard	views,	metrics	rate,	alert	handling	
f. Automates	meter	configuration	changes	and	S/W	upgrades	

2. App	User	(OSS)	
a. Creates	reports		
b. Schedules	report	generation	
c. Creates	and	configures	alerts	

5 System	Integrations	
The	following	systems	will	interact	with	OSS	for	data	communications.	
	
5.1 ESB	Charging		
ESB	Charging	connects	to	OSS	over	REST/HTTP	interface	for	performing	the	following	
interactions.		

1. Sends	alarms	to	OSS	
2. Send	number	of	meter	readings	to	OSS	
3. Send	meter	activation/de-activation	data	to	OSS	

	
5.2 Power	Meter	
Power	Meter	connects	to	OSS	over	3G/LTES	using	various	TCP	data	formats	for	the	following	
communications.		

1. Streaming	of	Monitoring	metrics	to	OSS	
2. Send	alarms	(buffer	%	low,	H/W	or	S/W	errors)	to	OSS	

6 Architectural	Representation	
This	document	presents	the	system	architecture	as	a	set	of	technical	decisions	and	views	
(use-case	view,	technology	choices,	system	architecture	view)	based	on	goals	and	
constraints.	

7 Use-case	View	
The	Use-case	View	describes	the	set	of	scenarios	or	use-cases	that	have	a	substantial	
architectural	coverage	and	represent	some	significant,	central	functionality.	The	following	
use-case	diagram	describes	the	significant	use-cases	in	this	system.	

	
	



	

8 System	Architecture	View	
The	following	view	describes	the	System	Architecture	and	its	components.	
	

	



9 Technology	choices	
9.1 Software	Frameworks	/	Components	
Netty	 High	throughput	I/O	system	for	receiving	metrics	from	Meters	
Apache	Storm	 The	real-time	metrics	processing	system	
Hadoop	 Batch	processing	system	for	monitoring	data	
Java	 Programming	language	for	implementing	most	of	this	architecture	
Cassandra	 A	No-SQL	Database	system	for	storing	monitoring	data	and	entity	data	
WildFly	(JBoss)	 The	Java	EE	container	for	hosting	the	application	components	
Elastic	Search	 Indexed	text	search	into	the	meter	data	and	metrics	data	
Kibana	 A	framework	for	data	visualizations	
AngularJS	 UI	Technology	for	composing	views	for	the	desktop	web-app	
iOS,	Android	 Mobile	app	platforms	for	developing	the	app	clients	to	the	OSS	system	
	
All	backend	nodes	will	run	on	Linux	OS	and	some	instances	might	use	Docker	container	for	
virtualization	(micro	services).		
	
9.2 Deployment	Specifications	
The	following	nodes	(instances)	are	considered	for	deployment	for	various	services.	
	
Node	type-1:	 4	core	2.4GHz,	24	GB	RAM	
Node	type-2:		 16	core	2.4GHz,	128	GB	RAM	
Storage:	 All	nodes	have	7.2K	SATA	drives	or	SSD	
Network:	 All	nodes	are	connected	to	a	rack	switch	with	full	duplex	Gigabit	Ethernet	

connection	between	nodes	
	
Node	role	 Node	type	 Cluster	size	 Parallelism	(cores)	
Zookeeper	 Type-1	 3	 12	
Storm	Nimbus	 Type-1	 2	 8	
Storm	Supervisor	 Type-2	 4	 64	
Kafka	 Type-2	 4	 64	
Cassandra	 Type-2	 5	 80	
Hadoop	 Type-1	 4	 16	
Microservices	 Type-1	 6	 24	
Elastic	Search	 Type-2	 2	 32	
Redis	 Type-1	 2	 8	
NGinX	 Type-1	 4	 16	
Netty	 Type-1	 4	 16	
Push	Services	 Type-1	 4	 16	
Monitoring	 Type-1	 2	 8	
	

10 Data	Architecture	
The	system	will	use	a	no-SQL	data	store	(Apache	Cassandra)	for	storage,	update	and	
retrieval	of	data.	Cassandra	is	chosen	due	to	its	characteristics	favoring	time-series	data	
types,	high	availability,	high	scalability	and	high	performance.	



The	following	are	the	significant	data	tables.	
	
10.1 Event	Data	(high-growth	/	variable)	
• Monitoring	metrics	(raw)	
• Real-time	aggregates	
• Batch	aggregates	
• ESB	readings	counts	
• ESB	alarms	
• Scheduled	jobs	
• Configuration	changes	
• S/W	upgrade	logs	
	
10.2 Entity	data	
• Meters	
• Meter	groups	
• Users	
• User	groups	
• Auth	tokens	
• Policies	
	
Data	sizing	details	are	discussed	in	the	section	2.3.	

11 Data	processing	pipeline	
The	following	diagram	describes	data	processing	pipeline	for	handling	the	monitoring	
metrics	data	flow.	
	

	



	
The	Storm	topology	provides	the	real-time	aggregates	such	as	number	meters	sending	in	
last	minute	etc.	and	anomaly	detection	for	buffer	%	threshold,	or	meters	check-in	count	etc.	
	
Hadoop	map-reduce	jobs	provide	various	batch	aggregates	used	by	the	dashboard	views.	
The	dashboard	queries	combine	the	batch	aggregates	from	Hadoop	with	the	real-time	
aggregates	from	storm	topology	to	provide	a	continuous	visibility	into	Meters	status.	Both	
Hadoop	and	Storm	use	Cassandra	for	storing	the	aggregate	and	raw	data.	

12 System	Components	
The	following	sections	provide	details	about	significant	components	that	make	up	the	
architecture	and	the	rational	for	the	choices	made.	

	
12.1 Security	Considerations	
The	architecture	provides	the	following	mechanisms	to	ensure	security	for	accessing	data	
and	services.	

1. Admin	interface	and	App	User	interfaces	are	protected	by	the	user	authentication	
using	password	protection.	

2. Metrics	interface	is	protected	by	Authentication	tokens	provisioned	to	meters.	
3. ESB	communication	interface	is	protected	by	REST	API	tokens.	
4. Data	at	rest	can	be	protected	using	encryption	service	(optional,	as	privacy	related	

data	is	not	involved).	
5. All	internal	services	are	protected	by	the	security	groups	(VPC)	or	private	subnets	
6. Firewall	rules	provide	access	at	the	network	domain	interfaces.	

	
12.2 Metrics	Streaming	(Meter	monitoring)	
The	Power	Meters	are	expected	to	be	Smart	Devices	running	on	an	embedded	OS	(Linux	
kernel,	Android	etc)	and	paly	a	role	of	an	IoT	sensor.	The	device	will	have	network	
connectivity	over	3G/LTE	and	can	be	configured	with	a	destination	for	sending	data	to.		
	
Meter	data	types	
A	Meter	handles	the	following	kinds	of	data:	

1. Outgoing	
a. Power	usage	readings	(to	ESB	Charging)	
b. Meter	monitoring	metrics	(to	OSS)	

2. 	Incoming	(from	OSS)	
a. Meter	configuration	
b. S/W	upgrade	
c. Adhoc	queries	(status,	metrics)	

Each	monitoring	metric	will	have	the	following	data	
1. Meter	ID	
2. Buffer	%	
3. S/W	version	
4. Status	metrics	(variable	number)	

	
The	meter	will	also	have	a	memory	buffer	(SRAM/SDRAM)	that	can	be	used	to	store	the	
meter	readings	while	awaiting	the	flush	out	to	ESB	Charging.	



	
Meters	connect	to	a	Radio	Base	Station	(RBS)	over	3G/LTE	which	in	turn	transmits	the	data	
to	OSS	over	IP	network.	
	
At	the	time	of	initial	provisioning,	Meters	are	configured	to	send	monitoring	data	to	the	
Load	Balancer	IP	address	that	serves	the	Netty	Listener.	The	configuration	could	also	be	
changed	later	though	a	configuration	push.	
	
12.3 Netty	Listener	
Netty	is	a	non-blocking	I/O	(NIO)	framework.	It	is	used	in	this	architecture	to	build	a	high-
throughput	listener	for	receiving	meter	monitoring	metrics	without	incurring	the	overhead	
of	HTTP	transport.	HA	Proxy	is	considered	for	use	as	a	load	balancer	for	Netty	Listener.	The	
Netty	Listener	will	also	act	the	client	for	Kafka,	the	next	stage	in	the	data	processing	
pipeline.	
	
12.4 Apache	Kafka	
Apache	Kafka	is	a	distributed	publish-subscribe	messaging	system.	It	provides	high	
throughput	persistent	messaging	for	parallel	data	loads.	It	uses	compression	to	optimize	IO	
performance	and	mirroring	to	improve	availability,	scalability.	
	
Kafka	writes	the	message	immediately	to	page	cache	and	disk	queue	rather	than	holding	it	
in	memory.	Page	cache	is	managed	more	efficiently	than	garbage	collected	memory.	Kafka	
is	shown	to	be	faster	than	other	messaging	systems	in	performance	benchmarks.	
	
Our	Kafka	component	will	have	separate	topics	for	monitoring	metrics	and	error	alerts.	The	
topics	are	subscribed	by	Storm	spouts	for	consumption,	in	the	next	stage	of	data	processing.		
	
12.5 Apache	Storm	
Apache	Storm	is	a	general-purpose,	event-processing	system	for	real-time	data	stream	
processing.	Storm	uses	a	cluster	of	services	for	scalability	and	reliability.	In	Storm	
terminology,	we	create	a	topology	that	runs	continuously	over	a	stream	of	incoming	data,	
which	is	analogous	to	a	Hadoop	job	that	runs	as	a	batch	process	over	a	fixed	data	set	and	
then	terminates.	
	
The	data	sources	for	the	topology	are	called	spouts	and	each	processing	node	is	called	a	
bolt.	Bolts	can	perform	arbitrarily	sophisticated	computations	on	the	data,	including	output	
to	data	stores	and	other	services.	
	
We	use	Storm	for	real-time	processing	of	the	data	to	generate	alerts,	aggregates	and	feed	
the	data	to	Hadoop,	the	batch	stage	in	out	data	processing.	
	
12.6 Apache	Hadoop	
Apache	Hadoop	is	a	framework	that	allows	for	the	distributed	processing	of	large	data	sets	
across	clusters	of	computers	using	simple	programming	models.	This	architecture	uses	
Hadoop	for	batch	processing	of	meter	monitoring	data	with	the	goal	of	generating	
aggregate	metrics,	anomaly	detection	and	data	projections.	



	
12.7 Apache	Cassandra	
Apache	Cassandra	is	a	distributed	database	management	system	designed	to	handle	large	
amounts	of	data	across	many	commodity	servers,	providing	high	availability	with	no	single	
point	of	failure.	Cassandra	is	proposed	as	the	data	store	technology	for	all	data	needs	in	this	
architecture,	because	its	characteristics	match	the	requirements.	
	
12.8 NGinX	
Nginx	is	a	web	server	with	a	high	concurrency,	performance	and	low	memory	usage.	It	can	
also	act	as	a	reverse	proxy	server	for	HTTP,	HTTPS	protocols,	as	well	as	a	load	balancer	and	
an	HTTP	cache.	This	architecture	uses	NginX	as	a	load	balancer	for	the	REST/HTTP	
connections.		
	
12.9 JBoss	(WildFly)	
JBoss	(version	name:	WildFly)	is	a	Java	EE	container	and	web	servier.	JBoss	is	used	in	this	
architecture	for	the	REST	endpoints	implementation	and	also	as	the	container	for	Java-
based	micro	services.	RestEasy,	a	JBoss	implementation	of	JAX-RS	specification,	is	
considered	for	the	REST	endpoint	implementations,	while	JSON	would	be	the	data	format	
choice.	
	
12.10 Micro	Services	
Micro-services	is	a	software	architecture	style	in	which	complex	applications	are	composed	
of	small,	independent	processes	communicating	with	each	other	using	APIs.	These	services	
are	highly	decoupled	and	focus	on	doing	a	small	task,	facilitating	a	modular	approach	to	
system-building.	
	
All	the	request-response	style	backend	processes	in	this	architecture,	such	as	
Authentication	service,	will	be	implemented	as	micro	services.	A	Linux	container	(LXC)	
technology	such	as	Docker	would	be	utilized	for	optimal	deployment	of	the	services	on	
virtualized	infrastructure.		
	
12.11 Push	services	
The	architecture	uses	two	kinds	of	push	services	–	the	app	push	service	and	the	RBS	push	
service.	
	
The	app	push	service	is	an	implementation	for	sending	out	alerts	to	mobile	and		
desktop	clients	using	Google	Cloud	Messaging	(GCM)	API,	Apple	Push	Notification	(APN)	API,		
web	sockets	for	desktop	web	clients	and	email.		
	
The	RBS	push	service	is	a	device	management	client	that	can	push	configuration	and	S/W	
upgrades	to	Power	Meters	over	the	(e)	RBS	protocol.	The	RBS	push	service	will	support	
different	Meter	platforms	which	support	different	device	management	interfaces.		

13 Monitoring	the	Deployment	
The	production	deployments	will	use	the	following	monitoring	and	instrumentation	services	
or	tools	for	visibility	into	system	operations	and	issues	



1. Nagios	
2. Loggly	
3. Rsyslog	

14 System	Maintenance	
The	system	will	need	maintaining	the	data	schema	changes,	data	migration	across	version,	
an	upgrade	for	software	while	keeping	the	system	stable.	The	following	sections	discuss	
these	concerns.	
	
14.1 Data	Migration	and	Schema	Changes	
Data	migration	and	schema	changes	in	Cassandra	can	be	accomplished	through	CQL	
scripting.	The	scripts	should	be	maintained	in	a	versioning	system.		
	
14.2 S/W	Upgrade	
All	software	upgrades	will	follow	a	Versioning	and	Releases	process	to	ensure	that	the	all	
component	are	compatible	with	each	other.	A	Release	Notes	document	specifies	the	
dependencies	versions.	The	S/Wupgrade	process	should	be	automated	to	update	the	
dependencies	as	well,	as	needed.		

15 References	
http://netty.io	
http://www.confluent.io/blog/stream-data-platform-1/	
http://storm.apache.org	
https://github.com/apache/storm/tree/master/external/storm-kafka	
http://hadoop.apache.org	
http://cassandra.apache.org	
	
	
	
	
	
	
	
	


