
Patterns in random point distributions in higher 
dimensional Cartesian spaces 

 
Venkata Pagadala 

June 2018 
 

Abstract 

This note discusses algebraic operations defined using the patterns observed in 
the uniform distributions of random points in a higher dimensional space, in the 
context of a square metric. Using this algebra, I analyze the random points as 
objects resulting from oscillations in a finite interval with no synchronization. 
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Introduction 
The following results inspect random points defined using a process of 
combining random values as the N-dimensional coordinates of the points in an 
N-Dimensional space where N is considered large. 
 
Definitions 
1. Square metric: I define a metric called square metric for any two points in 

the Euclidean space as the square of the Euclidean distance between them. 
Example: The path length, using the square metric, between two 
diametrically opposite points on a circle is same via any third point on the 
circle, due to the Pythagorean identity. 

 
2. 𝐴!" is a random point in an 𝑁 −	dimensional Euclidian space, with its 𝑖#$ 

Cartesian coordinate as a uniform random value 	𝑎%	 in the interval [𝑚% −
𝑟, 	𝑚% + 𝑟] where 	𝑚% ∈ 	ℝ and 𝑟 ∈ 	ℝ; 	0 < 𝑟 < ∞; 	𝑖 = 1,2,3, . . , 𝑁.  
 
𝐴!"	can also be denoted as 𝐴!	or 𝐴, where 	𝑟	 or both 	𝑟	 and 	𝑚  are 
insignificant in the context. 

 
3. The point 𝑀 with coordinates (𝑚&, 𝑚', . . , 𝑚() is called the anchor point for 
𝐴. 𝐴 is a random point in the context of	𝑀. 

 



4. 𝑀 → 𝐴 is the random point system where 𝐴 is the random point in the 
context of 𝑀. 

 
5. 𝑀 → 𝐴 → 𝐵 →. . . → 𝑌 is the chain of random points 𝐴, 𝐵, . . . , 𝑌	 where every 

point is the anchor for the next point.  
 
6. The square metric |𝑃&, 𝑃'| of a pair of points 𝑃&	and 𝑃', is the square of the 

Euclidean distance between the two points. 𝑅" is the squared metric 
|𝐴!" , 𝑀|. 

 
7. 𝑄!" is a randomly selected vertex of a 𝑁 −	cube with 	2𝑟	 as its side length, 

and 𝑀 as its center. The coordinates of 	𝑄!"		have an absolute magnitude of 
	𝑟	 and may differ in sign. All vertices of the cube have an equal probability 
of getting selected. 

 
8. 𝑈!" is a randomly selected vertex of a 𝑁 −	octahedron with 2N vertices, 

2^N faces of (N-1)-simplexes, each vertex is located 	𝑟	 units away from the 
origin on a primary axis. All vertices of the polyhedron have an equal 
probability of getting selected. 

 
9. 𝐴′ is a point which has same coordinates as 𝐴, but in the sorted ascending 

order. 
 
10. Random radial: A line joining 	𝐴!		and its anchor point 𝑀 
 
11. Two square metrics |𝐴, 𝐵| and |𝐵, 𝐶| are orthogonal if  |𝐴, 𝐵| + |𝐵, 𝐶| ≈
|𝐴, 𝐶|. The angle ∠𝐴𝐵𝐶 is nearly		𝜋/2. 

 
12. Two square metrics |𝐴, 𝐵| and |𝐶, 𝐷| are considered skewed orthogonal if 
|𝐴, 𝐵| + |𝐵, 𝐶| + |𝐶, 𝐷| ≈ |𝐴, 𝐷|. The angles ∠𝐴𝐵𝐶 and ∠𝐵𝐶𝐷 are nearly 
𝜋/2. 

 
13. 	𝐴)		is the normalized random point for 𝐴!	with coordinates of {𝑎% −𝑚%}  
 
 
 
 



A few results and their proofs follow. 
 
Result #1:  

|𝐴!"	, 𝑀| 	≈ 𝑅 = 𝑁𝑟'/3 
 
Distance of a random point from its anchor is a function of 𝑁 (number of 
dimensions) and 𝑟 (size of the interval used for the random distribution) 
 
Proof: 
One can prove this result using the variance for a uniform random distribution. 
The following is an alternate proof, which sets a method for the subsequent 
proofs. 
 
Let 𝑑 be the difference between adjacent coordinates of 𝐴′ 

Let 𝑚 ≈ 𝑁/2 

𝑑 = 𝑟/𝑚 
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Result #2: 
|𝐴!"| ≈ |𝐵!"| 

 
All random points are equi-distant from their common anchor. 
 
Proof: 
This follows from the Result #1 which shows that the distance depends only on 
𝑁 and	𝑟	which are same for both points. 
 
  



 
Result #3: 

|𝐴!, 𝑃| ≈ |𝐴!, 𝑀| 	+ 	 |𝑀, 𝑃| 
 
The line passing through a random point and its anchor is orthogonal to any 
other line passing through any other random or non-random point and the 
anchor. 
 
This means all lines passing through a point 𝑀 in  ℝ(	 are orthogonal to all 
vectors of the random points having 𝑀 as their common anchor. 
 
Proof: 
The proof uses two sub-results 
1) Due to uniform distribution of 	𝑎%	around 	𝑚%	: 

M(𝑎% −𝑚%

(
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) ≈ 0 

2) For a two-flip event of a coin, there is an equal probability of outcomes of the 
two flips being same or opposite. If the two-flip event represents selecting 
successive coordinates of two points, then nearly half of the coordinate 
combinations will have opposite signs while other half will have same signs. 
 

|𝐴!, 𝑃| ≈ M(𝑎% − 𝑝%)'
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Then, using sub-results #1 and #2, the third term reduces to sum of differences 
between pair-wise differences of coordinates of 𝑀 and 𝑃, multiplied by the 
absolute value of 	(𝑎% −𝑚%). This value becomes insignificant, resulting in: 
 
|𝐴!, 𝑃| ≈ |𝐴!, 𝑀| 	+ 	 |𝑀, 𝑃| 

 



 
 
Result #4: 

|𝐴!" , 𝐵!"| 	≈ 	 |𝐴!"| 	+ |𝐵!"| 	≈ 	2𝑅 
 
Distance between two random points is  √2	 times their radial distance. 
 
Proof: 
Substituting 𝐵!" for 	𝑃  in the Result #3: 
 
|𝐴!" , 𝐵!"| 	≈ 	 |𝐴!" , 𝑀| 	+ |𝑀, 𝐵!"| 
																						≈ 2𝑅 
 
Result #5:  
 

|𝐴!!"! , 	𝐵!"""| 	≈ |𝐴| 	+ 	 |𝑀&, 𝑀'| 	+ 	 |𝐵|	 
 
The squared distance between two random points A and B with different 
anchors and different spreads, is the sum of squared distances to their anchors 
and the squared distance between the anchors. 
 
Proof: 
Due to the Result #3, the radial 	𝐴!!"! and the line	𝑀&𝑀' are orthogonal and the 
radial 	𝐵!"""  and the line	𝑀&𝑀' are orthogonal. 
 
So, it is enough to prove that 	𝐴)	and 	𝐵)	 are orthogonal. The Result #4 can be 
applied after scaling 	𝐵)	such that |𝐴)| ≈ |𝐵)|	 which shows that 	𝐴)	and 	𝐵)	  
are orthogonal. 
 
  



 
Result #6: 
 

𝑖𝑓	𝑀 → 𝐴 → 𝐵 →. . . → 𝑌; 𝑡ℎ𝑒𝑛 

|𝐴| + |𝐵|	+	. . +	|𝑌| ≈ |𝑀, 𝑌| 

 
The squared distance between the anchor of first random point 𝐴 and the last 
random point 𝑌 in a chain is, sum of squared lengths of radials of all the random 
points in the chain. 
 
Proof: 
Every adjacent set of three points in the chain involve a middle point being in 
the role of an anchor, resulting in orthogonality between the two lines produced 
by the three points. Also the skewed orthogonality is extended to all distant 
pairs of points, due to Result #5. 
 
Then all segments build the distance between 𝑀 and 𝑌 similar to coordinates 
resulting in the approximation. 
 
Result #7:  
 

|𝐴!" , 𝑄!,| ≈ V		 4𝑅		 ∶ 𝑘 = 𝑟
𝑅 + 𝑁𝑘' 	 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	] 

 
The distance between	𝐴	and a random cube vertex	𝑄	is twice the length of radial 
of 𝐴. 
 
Proof: 
Due to the results of two-flip events of a coin as discussed in Result #3, 
a half of the combinations will have opposite signs and the other half will have 
same signs. 
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Result #8:  
 

|𝐴!" , 𝑈!,| ≈ 𝑅 + 𝑘' 
 
The distance between	𝐴	and a point 𝑘 units away from 𝑀 along a randomly 
selected axis is, 𝑅 + 𝑘'. This result follows from the Result #3 by substituting 
𝑈 for 𝑃, as a special case. 
 

Result #9:  
 

|𝐴!" , 𝑀| 		≈ 𝑅 
|𝐴!" , 𝐵!"| ≈ 2𝑅 
|𝑀, 𝑄!"| 			≈ 3𝑅 
|𝐴!" , 𝑄!"| ≈ 4𝑅 

 
Square metrics of the radial, edge between 𝐴 and 𝐵, cube half diagonal and 
distance between 𝐴 to cube vertex, are in arithmetic progression.  
 
Proof: 

|𝑀, 𝑄!"| = M𝑟'
(
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																		= 𝑁𝑟' 
																		= 3𝑅 
 
And the Results #1, #4 and #7 provide the other approximations. 



 
Result #10:  
 
As with the other results, the following are approximations. 

1. The diameter of the “sphere” of a random distribution of the points is 
√2	times the radius. 

2. For a random point, the nearest other random point in the distribution is 
at the same distance as the one diametrically opposite to it, which is at √2 
distance. In 3𝐷, this would mean equator and opposite pole being at same 
distance from a pole. 

3. The random points in a distribution form a simplex with dimensions 
equal to the number of the random points, even if it is more than the 
dimensions of the space in which the points are created. 

4. All points in the distribution appear to form the base “circle” of a cone, 
with the apex of cone being any point, outside or inside of the 
distribution. This is due to random points being equi-distant from any 
other point. 

 
 
Result #11:  
 

|𝐴)"	.		𝐵)"| ≈ 𝑅𝑟'/3 
 
The square metric of a random point obtained by multiplying same coordinates 
of two normalized random points is 𝑟'/3	 times the square metric of the random 
points. 
 
Discussion 
The following are a few effects of the patterns observed in the above results. 
 
Infeasibility of constructing randomness through coordinates 
Several theorems and results were stated in the areas of data science and related 
mathematics describing the concentration of volume and surface area of a unit 
sphere near its surface and equator, in high-dimensional spaces. The statements 
included how the random points would follow these concentrations, resulting in 
orthogonality between any two random points etc. 
 



However, as seen in the results of this note, the random points possess a 
significant amount of patterns. So I would hesitate to call them random points, 
though they were built using random coordinates. 
 
One might argue that the random points are uniformly distributed without a 
pattern, but the space or the volume itself is non-uniformly distributed along 
lower-dimensional measures. This anomaly reflects as patterns in the random 
point distributions.  
 
However, the presence of patterns, and not it’s reasons, leads to questioning of 
the labeling these points as random points.  
 
Unsynchronized oscillations producing a sphere 
Two points moving on the two axes in a 2𝐷 space, in a synchronized oscillation 
produce coordinates for the locus of a circle. Three such points in a 3𝐷 space 
would produce a sphere. 
 
In both cases of 2𝐷 and 3𝐷, the points are not independent because the freedom 
of the points is restricted by the synchronization. However, the freedom in 3𝐷 is 
more compared to 2𝐷, while meeting the requirements of synchronization. 
 
In an 𝑁 −	dimensional space with a large 𝑁, the constraint due to 
synchronization is insignificant or absent, such that, independent random 
coordinates of a random point can produce a (𝑁 − 1) −	sphere through their 
unsynchronized oscillations. 
 
Coordinate systems failing to preserve variety in distance 
Variety in distance is the ability of a distance to be different from other 
distance. The Cartesian system builds distance between two points as a function 
of sum of squared differences of coordinate pairs across the two points. This 
sum is sensitive to the values of coordinates in lower dimensions. However, the 
sensitivity reduces as the dimensions increase, and the distance is no longer a 
function of coordinates in higher-dimensions. This is reflected in the results 
shown above, for the random points. 
 
 
 



Looking through the lens of randomness 
Randomness is defined as the absence of patterns or communications among a 
collection of things, numbers or objects. However, the very definition forbids 
the pure randomness, by enforcing a pattern through labelling the collection 
members as things, numbers or objects. 
 
Most of the patterns or lack of randomness observed in the the results of this 
note, is due to the insignificance of number of random points compared to the 
number of quadrants in the higher dimensional Cartesian coordinate system. 
However, one could imagine non-random points with an unusual order or 
pattern and have everything back in order. 
 
 


